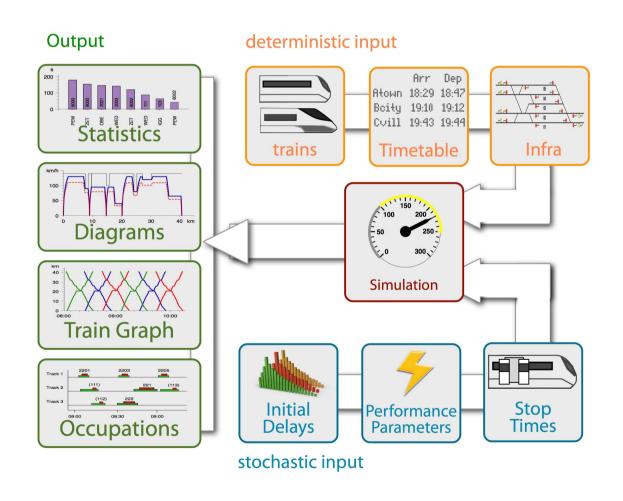
Agile Simulation in Planning and Operating London's Elizabeth line

Andrew Nash, St. Pölten University of Applied Sciences Georgio Medeossi, trenolab Mike Bagshaw, MTR UK

> **Transportation Research Board 102nd Annual Meeting** 10 January 2023



Outline

- 1. Simulation and "Agile" Simulation
- 2. The Elizabeth line
- 3. Agile Simulation Benefits: Examples from the Elizabeth line
- 4. Conclusions

1. Synchronous Microscopic Simulation

Railway Simulation History

Single Train Run

+ All trains Lines Time Interval

Deterministic Sim.

+ Variability of operations Time (several days)

Stochastic Sim.

+ Real delay Distributions

Advanced Stochastic Sim.

- ✓ One train
- √ Verify run time
- √ All trains leave on time
- √ First check of timetable FEASIBILITY
- √ Stochastic departure and Stop time based on standard variability
- √ First check of timetable ROBUSTNESS
- √ Stochastic departure and Stop time based on REAL VARIABILITY
- **✓ HIGHEST ACCURACY**
- ✓ Precise estimation of ROBUSTNESS and RELIABILITY

√ Any computer

- √ More computational power
- √ Network model
- ✓ Interface to import timetable data
- √ More computational power
- ✓ Parallel computing? (Min50 runs)
- ✓ Driver behavior model
- √ Realistic delays
- √ Real delays
- √ Filter to remove secondary delays
- ✓ Parallel computing? (250 runs)

Why isn't simulation used more often?

Why isn't simulation used more often?

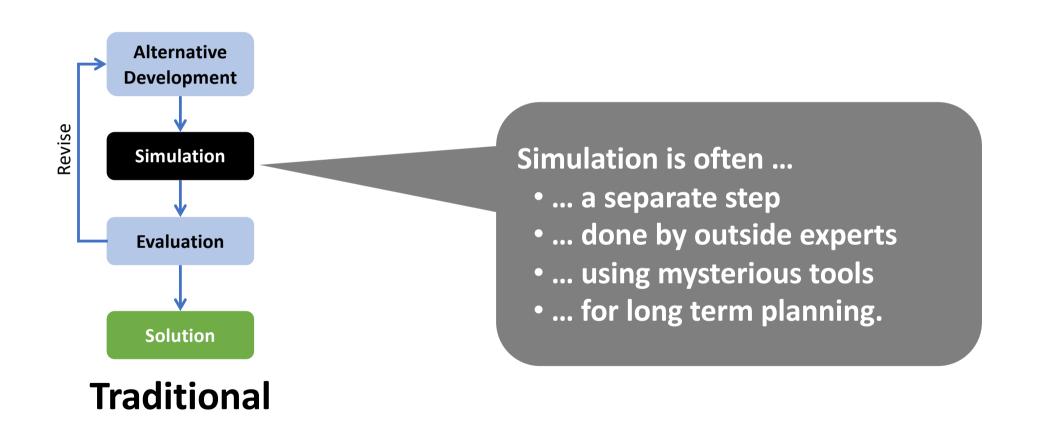
- Potential: Much more published on how optimisation <u>could</u> improve railway performance than true success stories. (Liebchen & Schülldorf 2019)
- Perception: Simulation is ...
 - complicated ...
 - takes too long ...
 - results often unhelpful for improving real railway performance.

Simulation: Areas for Improvement

Weakness	Description
Model set-up time	It takes too long to create models.
Model error correction	It takes too long to de-bug models.
Large model running time	It takes too long to run large network models.
More complex strategic planning	Risk of simulation failure in complex planning.
Effective tactical planning	Simulation too slow and un-targeted.
Multi-parameter optimisation	Simulation too slow and independent.

Hansen, I., & Pachl, J. (Eds.) (2014). Railway timetabling and operations: Analysis, modelling, optimisation, simulation, performance, evaluation. Eurail press.

Simulation Improvements: 2023 Status


Weakness	Improvements	2023
Model set-up time	Data management tools, visualisation	
Model error correction	Speed, visualisation	
Large model running time	Software designed for new hardware	
More complex strategic planning	Speed, memory, collaboration	
Effective tactical planning	Speed, memory, collaboration	
Multi-parameter optimisation	Speed, memory, collaboration	

Simulation time in 2016: 14 hours for 30 runs
Simulation time in 2023: 1.5 hours for 250 runs

Improving Technology + Changing Processes

- Simulation technology: has improved significantly.
- How we use simulation: has not changed \rightarrow this is a problem because
 - Innovation theory: It's critical to <u>change old processes</u> to take full advantage of new technology ... adding new technology to old processes isn't enough.
 - Tacit knowledge theory: Using new technology effectively often requires knowledge which is not known explicitly, even by experts, and which is difficult to explicitly transfer to other people.

Railway Planning Process

Railway Planning Process

Traditional

experts into the planning team. **Alternative Alternative Development Development** Improved definition of Revise alternatives. Revise Simulation Faster and more useful simulation. **Evaluation Evaluation** Improved communications **Solution** and understanding of results.

Agile

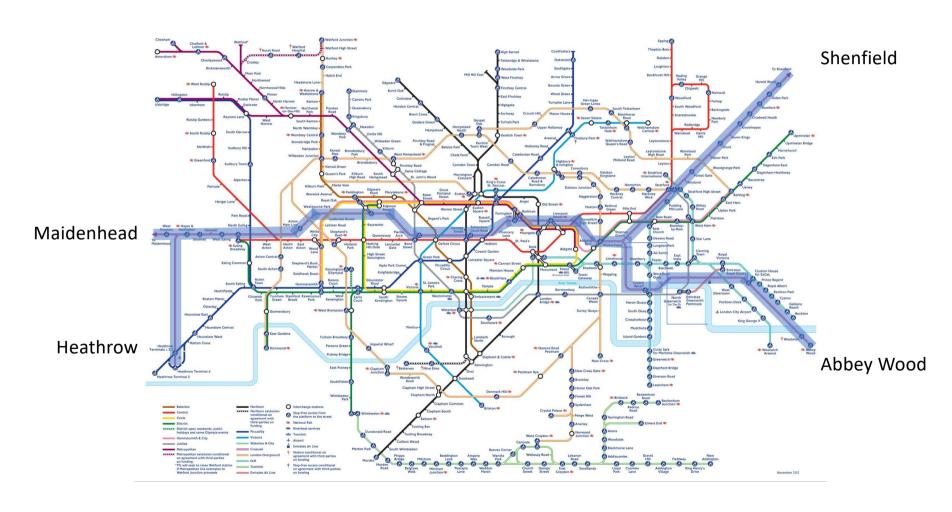
Agile Simulation ...

... changes the railway planning

process by embedding simulation

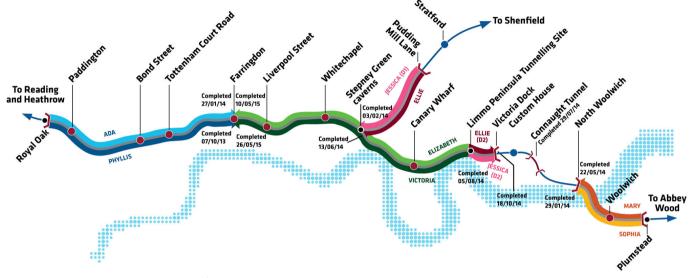
What's in a name?

Agile simulation \neq new technology \rightarrow new process for using simulation.


Noticed it after several years of successful collaboration.

Named "agile simulation" because similar to agile software development:

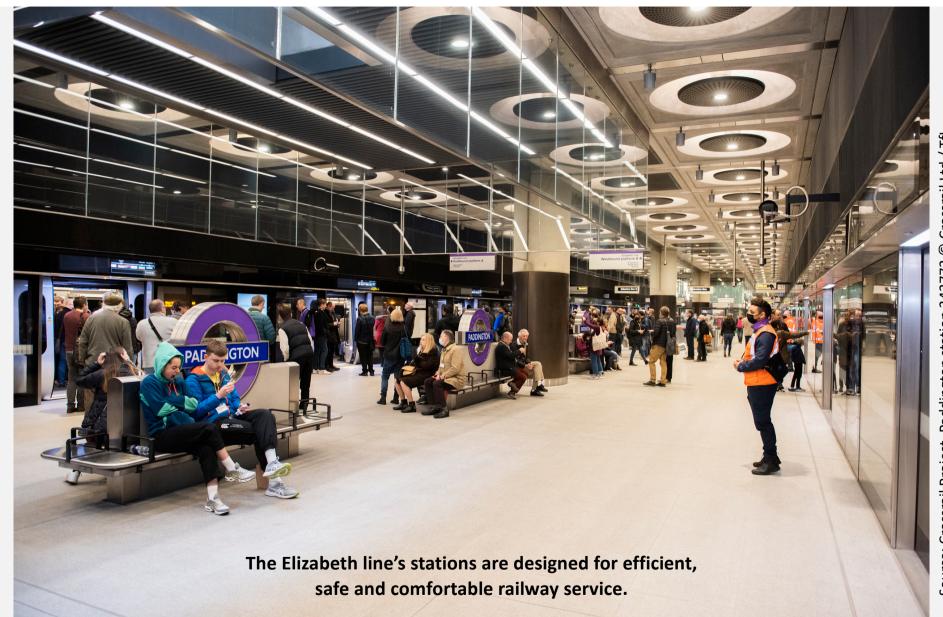
"a collaborative effort of self-organizing and cross-functional teams with their customer(s)/end user(s), adaptive planning, evolutionary development, early delivery, continual improvement, and flexible responses to changes in requirements, capacity, and understanding of the problems to be solved." (Beck, et al; 2001)

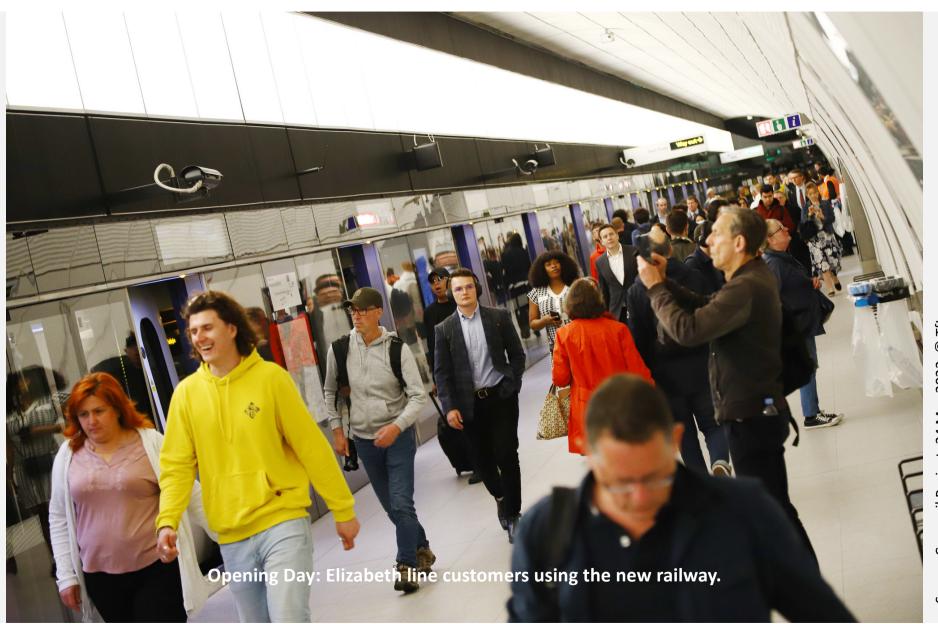

Agile simulation advantages illustrated using Elizabeth line examples.

2. Elizabeth line

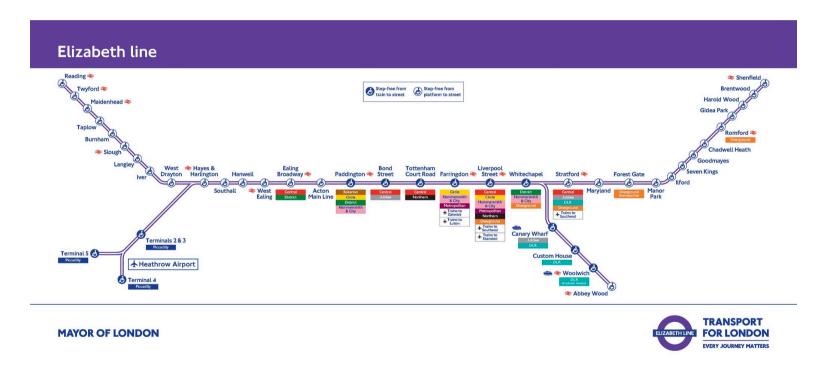
Elizabeth line Planning History

- 1943 Abercrombie Plan: included an East-West Railway Line for London
- 1974 London Rail Plan: first used term *Crossrail*
- 2001 London East West Study recommends detailed study
- 2005 Transport for London (TfL) and UK DoT create "Crossrail Ltd."
- 2009 Ground broken
- 2015 Tunnelling complete
- 2016 Renamed *Elizabeth line*
- 2022 Initial service through tunnel opens to passengers


Schematic diagram of tunnelling plan showing eight tunnelling machines.


Source: Crossrail, © TfL image_344005

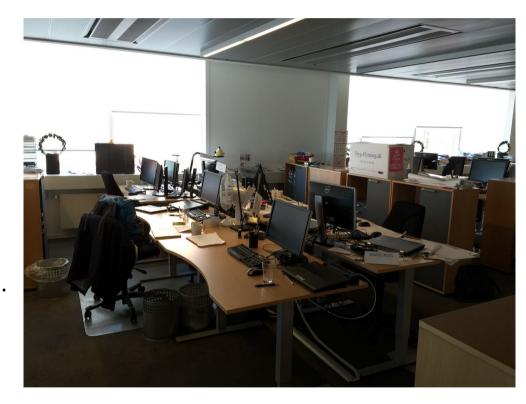
Source: Crossrail Project, Paddington station 343772 © Crossrail Ltd / Tfl.



Source: Tom Nicholson © TfL

Source Crossrail Project, 24 May 2022: © TfL.

3. Advantages of Agile Simulation

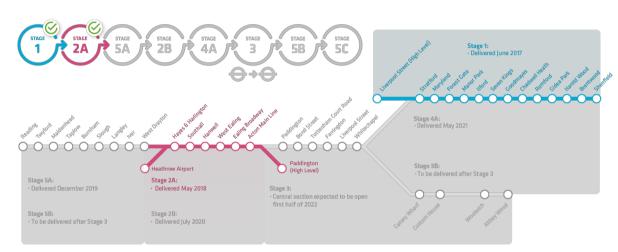

Five examples from the Elizabeth line planning and operations

Agile simulation is fast and accurate

Bid Preparation Process

- Complexity: dense service of surface lines operating on shared track + tunnel.
- Timing: multi-stage operations plan.
- Payments: Intricate incentive-penalty framework for compensation.

- Strict submission deadlines = need for speed.
- Incentive-penalty compensation scheme = need for accuracy.



Agile simulation facilitates stakeholder consensus

Staged Opening Plan

- RFP specified 9 operating stages.
- Construction delays significantly impacted planned schedule.
- Stakeholder consensus required to move forward with each stage.

- Clear communications between stakeholders and simulators.
- Credibility of simulation results enhanced by trust gained with embedded simulation experts being part of the team.

Stage 2AElizabeth line Staged Operating Plan

Agile simulation supports efficient construction

Liverpool St. Station Platform Lengthening

- Remove 1 platform and lengthen 4 others to accommodate new vehicles.
- Tunnel delays meant Elizabeth line trains still using surface station.
- Simulation shows original TT unsatisfactory.

- Stochastic simulation of possible delays and recovery plans.
- Integrated TT and construction planning with contractor (= 20% cost saving).
- Stakeholders especially sensitive due to negative tunnel delay publicity.

Agile simulation inspires model improvements

Early Implementation of End-to-End Service

- Central tunnel opened: 24 May 2022.
- Service operating well (97% punctuality).
- Should full service be introduced early?

- Stochastic simulation using "three-railway" service data.
- Simulation shows TT unsatisfactory.
- New vehicle function "auto-reverse" added to simulation model and used in acceptable reduced timetable.

Agile simulation encourages operating improvements

Shenfield Line Timetable Improvement Study

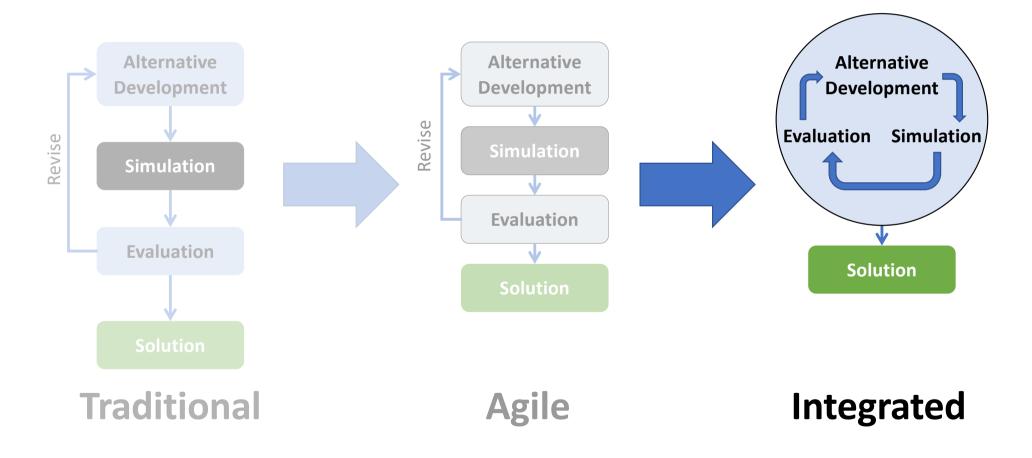
- Busy Shenfield Liverpool Street line.
- Access to expert and model led team to ask:
- Could service be improved to reduce delays?

Simulation Requirements

- Delay cause identification using passenger arrival data (Oyster).
- Stochastic simulation.
- Solution implemented → 2.9% punctuality improvement (AM period).

Medeossi G., Nash A., 2020. Reducing Delays on High-Density Railway lines: London–Shenfield Case Study. TRR 2674.

4. Conclusions: Agile simulation ...


- Helps railways take advantage of significantly improved hardware and software, including multi-objective optimisation and integration with other models (e.g., energy saving, multi-modal coordination).
- = integrating simulation more fully into the planning process.
- = more complex strategic planning & more types of tactical planning.
- = especially useful for solving many of today's key railway challenges such as quickly increasing capacity and service quality.

Agile Simulation is based on Soft Skills

- Communications
- Relationships
- Trust
- Understanding

Railway Planning Process

References

- Hansen, I., & Pachl, J. (Eds.) (2014). Railway timetabling and operations: Analysis, modelling, optimisation, simulation, performance, evaluation. Eurail press.
- Liebchen, Christian and Hanno Schülldorf; A Collection of Aspects Why Optimization Projects for Railway Companies Could Risk Not to Succeed A Multi-Perspective Approach; 8th Intl. Conf. on Railway Operations Modelling & Analysis RailNorrköping 2019.
- Nash, Andrew, Felix Laube, and Samuel Roos; A Framework for Capturing the Business Benefits of Railway Digitalsation;
 Transportation Research Board AM 2020; https://www.andynash.com/nash-publications/2019-12-Nash-Digitalisation-TRB2020.pdf
- Beck, Kent; et. al. "Manifesto for Agile Software Development". Agile Alliance 2001. https://agilemanifesto.org/
- Crossrail Ltd.: Crossrail from its early beginnings; https://www.crossrail.co.uk/crossrail-from-its-early-beginnings
- Crossrail Press Photos: https://www.flickr.com/photos/crossrailpress/
- de Fabris, S., G. Medeossi, and G. Montanaro. TRENISSIMO: Improving the Microscopic Simulation of Railway Networks. In: Computers in Railways XVI (G. Passerini, et.al., eds.), WIT Press, Southampton, Vol. 181, 2018, pp. 199–211.
- MTR UK; Delivering a Complex Platform Extension at London's Liverpool Street Station; https://mtr.uk.com/our-work/delivering-a-complex-platform-extension-at-londons-liverpool-street-station-with-minimal-passenger-disruption/
- Medeossi G., Nash A., 2020. Reducing Delays on High-Density Railway lines: London–Shenfield Case Study. Trans. Research Record: Journal of the Transportation Research Board, 2674 (7), pp. 193-205. https://doi.org/10.1177/0361198120921159
- Coviello N, Medeossi G, Nash A, Nygreen T, Pellegrini P, Rodriguez J.; Multi-objective Timetable Development Tool for Railway Strategic Planning in Norway; Transportation Research Record. July 2022. https://doi:10.1177/03611981221101392
- Pu, Y. S., S. Srikukenthiran, E. Morrow, A. Shalaby and Klumpenhouwer; Capacity Analysis of a Passenger Rail Hub Using Integrated Railway and Pedestrian Simulation; Urban Rail Transit, 2022; https://doi.org/10.1007/s40864-021-00162-7

Georgio Medeossi, g.medeossi@trenolab.com

Andrew Nash, andrew.nash@fhstp.ac.at

mtr trenolab

